Solution of the equation ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution
$3$
$2$
$1.5$
$2/3$
The cube root of $9\sqrt 3 + 11\sqrt 2 $ is
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
If $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ then $3{x^2} + 4xy - 3{y^2} = $
$\root 4 \of {(17 + 12\sqrt 2 )} = $
If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $