Solution of the equation  ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution

  • A

    $3$

  • B

    $2$

  • C

    $1.5$

  • D

    $2/3$

Similar Questions

For $x \ne 0,{\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$

Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are

The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is

The square root of $\sqrt {(50)} + \sqrt {(48)} $ is

${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$